

Reg. No.	:		•			-		-	•	••	•	• •		•	•	•									•				•••	
----------	---	--	---	--	--	---	--	---	---	----	---	-----	--	---	---	---	--	--	--	--	--	--	--	--	---	--	--	--	-----	--

Name:

II Semester M.Sc. Degree (C.B.S.S. - Reg./Supple./Imp.) **Examination, April 2022** (2018 Admission Onwards) **MATHEMATICS**

MAT2 C09: Foundations of Complex Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Define winding number of a closed rectifiable curve in C and determine the winding number of a circle about its centre.
- 2. Is the function $f(z) = \sin z$ bounded? Justify your claim.
- 3. Determine singularities and their nature of the function $f(z) = (1 e^z)^{-1}$.
- 4. State Schwarz lemma.
- 5. Define the function $E_p(z)$, an elementary factor, for p = 0, 1, 2, ... and show that $E_p\left(\frac{z}{a}\right)$ has a simple zero at z = a.
- 6. Show that if $\prod_{n=1}^{\infty} z_n$ exists, then it is necessary that $\lim z_n = 1$. $(4 \times 4 = 16)$

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - 1

- 7. a) State and prove the maximum modulus theorem.
 - b) Let G be a region and suppose that $f:G\to\mathbb{C}$ is analytic and $a\in G$ such that $|f(a)| \le |f(z)|, \ \forall z \in G.$ Then show that either f(a) = 0 or f is constant.

K22P 0192

- 8. a) State and prove the Morera's theorem.
 - b) Find all entire functions f such that $f(x) = e^x$ for $x \in \mathbb{R}$.
- State and prove the Goursat theorem.

Unit - 2

- 10. a) State and prove Rouche's theorem.
 - b) Deduce the fundamental theorem of algebra from Rouche's theorem.
- 11. Give the Laurent expansion of $f(z) = \frac{1}{z(z-1)(z-2)}$ in each of the following annulii:
 - a) ann(0; 0, 1)
 - b) ann(0; 1, 2)
 - c) ann(0; 2, ∞).
- 12. a) State and prove the residue theorem.
 - b) Evaluate $\int_0^{\pi} \frac{d\theta}{a + \cos \theta}$, using residue theorem.

Unit - 3

- 13. a) State and prove Hurwitz theorem.
 - b) If $\{f_n\}\subset H(G)$ converges to $f\in H(G)$ and each f_n never vanishes on G, then prove that either $f\equiv 0$ or f never vanishes.
- 14. State and prove Arzela Ascoli theorem.
- 15. State and prove Montel's theorem.

(4×16=